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Magnetic-field-induced anisotropic curvature elasticity of a vesicle membrane
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Interaction between a charged membrane and the electrolyte solution containing magnetic polyions is con-
sidered. A self-magnetic field, which arises due to the nonhomogeneous magnetic particle distribution near a
charged membrane increases the effective charge screening length for the parts of a membrane normal to a
magnetic field. The anisotropy of elastic properties of a membrane depending on the screening length is
calculated on the basis of the curvature expansion. It is shown that due to diminishing of the spontaneous
curvature for the parts of a membrane normal to a magnetic field there are two competing mechanisms of the
ferrovesicle shape transformation under the influence of a magnetic field—the formation of a prolate shape
orientated along a field due to the diminishing action of the demagnetizing field energy and the deformation to
a oblate shape due to the decrease in the spontaneous curvature of the parts of a membrane normal to a field.
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[. INTRODUCTION particles with the charged curved membrane in an external
magnetic field is carried out in this study. Although results
The interaction between colloidal particles and mem-obtained before in approximation of the planar membrane
branes is an active area of research[ /2] various aspects are confirmed with accuracy up to numerical coefficients,
of those interactions in relation to steric effects are considnevertheless, several new effects not mentioned before are
ered. On the other hand, an important role in behavior oflemonstrated—the anisotropy of the bending elasticity in a
lipid bilayers or membranes is played by electrostatic forcestangential plane of a membrane and dependence of the
The elastic properties of membranes due to electrostatic ifsaussian curvature elasticity constant on the magnetic field
teractions have been considered in several pa@+6]. A  strength except its direction as well as others. In Sec. Il, the
review of fascinating phenomena connected with the electrofree energy of a charged membrane surrounded by an elec-
static interactions of the macroions has recently appdaied trolyte solution containing magnetic particles is introduced.
A new object, ferrovesicle or vesicle containing dilute col- Fundamental solution of equations describing Fhe interag:ti_on
loidal solution of single-domain ferromagnetic particles, isPefween the charge and the electrolyte solution containing
introduced in[8] and its behavior under the action of an magnetic ions is obtained in Sec. Ill. On th|s. b§5|s the de-
external field is studied. It is found that thermal quctuationspendence of the Debye _Iength on the magnetic field streng.th
of a membrane are flattened with increase in the tension of & & planarfrT;]emtr)]rane cljs estatt))hsheq. The (_:urva'guhre elalst|c-
membrane with an applied field and ferrovesicle elongate'§r3(/)|e?er9yI ci.t ec ?r.ge. n:ﬁm rane |?terac|t|'ng ch: an 3.60'
along the field direction forming a prolate shaf#. By y'e soltion containing the magnetic polylons depending
. . . . on the magnetic field strength and its direction is derived in
;tudylng the_ferrove5|_cles_ for different ionic _strengths of theSec. IV. Some conclusions concerning the ferrovesicle shape
interior colloidal solution it has been established @ that

: . _ transformations according to the present model and compari-
the ferrovesicle depending on the ionic strength can take ag,, \ith available experimental data are given in Sec. V.
oblate or prolate shape. Since magnetic colloidal particles are

charged it is quite natural to assume that the transition to an
oblate shape occurs due to modification of elastic properties Il EREE ENERGY OF THE CHARGED MEMBRANE IN

of a membrane_ under the influence of a r_nagnetlc-f!eld- THE ELECTROLYTE SOLUTION WITH MAGNETIC
caused change in the length of Debye screening of the inter- POLYIONS

nal electrolyte solution containing magnetic polyiof.

Debye length calculation depending on the magnetic field Due to the electrostatic interaction between a charged
strength for a planar membrane as well as existing theoreticahembrane and magnetic polyions their concentration near
relations for various electrostatic contributions to the elastiche membrane becomes nonhomogeneous. When a magnetic
properties of membrane has supported this assumptioireld is applied the perturbation of the magnetic field takes
[9,10]. Nevertheless, the approach based on application of aplace. The energy of the magnetic field perturbation must be
expression of the Debye length derived for a planar memincluded when describing the interaction of magnetic poly-
brane for calculating the energy of a curved surface could b&ns with a membrane. If accounted for the electrical field
inconsistent in the sense that some terms arising due to thenergy, the mixing entropy of ions and the self-magnetic
interaction of charged magnetic particles with a curvedfield energy of the nonhomogeneous distribution of magnetic
charged membrane could be omitted. Values of numericgbolyions within the framework of the linear Poisson-
coefficients obtained in such a way could serve only as rougBoltzmann approach the free energy could be written as fol-
estimates. Full analysis of interaction of charged magnetitows:
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wheren, and n_ are the concentrations of positive and n.

negative ionsn, is the concentration of magnetic polyions, kgT Inn—+o+ez+¢=const, ®)
andn_ g, n_g, andny are their values far away from a

charged membrane. The potential of a electrostatic field n_

and the field strength of the perturbed magnetic fiékd kgT In-——ez ¢=const, 9
shall satisfy the following equations: -0

eAp=—4mp=—4me(z,n,—z.n_-+zn9), () KeT I + @26~ yoHodH = const, (10)
Nko

div(sH)= —4mxo(HoV)ny, 3
odiv(oH) Xo(HoV )i ® The last relation expresses the balance between thermal,

where the density of electrical charggs is equal to electric, and magnetic forces acting on magnetic polyions.
e(z.n,—z_n_+zny), eis the absolute value of an elec- The concentrations of ions in an electrolyte solution and
tron chargez,andz_ are valencies of cations and anions, magnetic polyions can be expressed from relati@s (9),
ze is the charge of a magnetic polyios,is the dielectric and(10) as follows:
permeability of a fluid,uy=21+4mxon,o is the magnetic
permeability of an initially homogeneous magnetic colloid, n.=n exp( _&% ¢) (11)
. . L . . + +0 ’
and yx, is the magnetic susceptibility of a single particle. kgT
Since the concentration of magnetic particles in a fer-

rovesicle is very small, the dependenceygfon the concen- no—n e ez ¢ (12
tration of magnetic polyions may be neglected. In the case -=N-o&X kgT /’
when the magnetic polyions are absent the expresgipn
coincides with the expression for the free energy of a elec- ez HyoH
. . . . . . —_— XO O
trolyte solution during its interaction with a charged mem- Ng=nNyo €XPY — keT = kel (13

brane[11,12. Let us calculate the variation of the free en-

ergy (1) accounting for Egs(2) and (3) and the boundary By linearizing the last relations with respect to the ratios of

conditions on a charged membranei¢ the external normal  the electric and magnetic energies of particles to the thermal
to a membraneg is the surface charge density on a mem-one we obtain the linear Poisson-Boltzmann model. Within

brane: the framework of this model the potential depends linearly
on the charge density of a membrane. Thus, by carrying out
—enVé=4mo, @ the quasistatic charging process of a membrane in relation to
its free energy in the surrounding electrolyte solution we
Sit= oy, (3 obtain
N(wodHE+ 41 xoHony) =NoHY
(Mo XoHoNk) . (6) Fe %J $0dS (14

where it is assumed that the exterior region of a vesicle sur-

rounding a charged membrane contains magnetic particleg should be pointed out that the obtained expression for the
Quantities in the interior region of the vesicle are denoted b)free energy of a membrane coincides with those used in dif-
the indexv, whereas on the outside by the indexSince the  ferent contexts previously, see, for exampg11,17.

dielectric permeability of water is much higher than that of a

'k;p'd 3"ayer’ g.“? so-called .g”e's'def m(r)]del r‘]""thl OPaque |, ' FyUNDAMENTAL SOLUTION OF COUPLED SET OF
oundary conditions is considerffq. (4)] when the electric EQUATIONS FOR ELECTRIC AND MAGNETIC

field generated by the charges on an exterior side of a mem- FIELDS

brane does not penetrate the interior redi8ri2. Varying

the free energy in relation to, ,n_,n, and accounting for Introducing the potential of a magnetic fiefH=V 6y

the electric and magnetic field equatiai23, (3) and bound- and linearizing the relation§l1)—(13) with respect to the
ary conditions(4), (5), and(6) lead to energy ratios after substitution of the linearized expressions
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into equationg2) and(3), we arrive at the following set of G from the relation(20) for the case when a magnetic field
coupled equations for the electric and magnetic field potenis perpendicular to the charged plaf@?) is expressed as

tials follows:
4me*z’n,, 4me*z’n_, A4mwe’zin
5 +Nio -N_o k'"ko GW(z)= f
= + + z G(ze,p)d , 21
% T o o (2) (ze,p)dS(p) (21)
4mezxoNio wherep is the radius vector to the point in a plane from the

Ap=x?p— ——————(HoV) 6y, (15) projection of the point at a distancefrom the plane. By
ekgT carrying out the integration we obtain

4meZxoNko 47 XNk 2
pol 8= —— = (HoV) d—— == (HoV)*6y. G(l)(z):aexq—xz)—i-

(16) MoX

2mA\% 1 1+ xz
22

exp—x2).
(22)

In the absence of a magnetic field the fundamental solutio

of the set(15), (16) reads b course, expressiof22) for the fundamental solution in

1D case coincides with the expression of the fundamental
, solution found from Eqgs(15) and (16) which in that case
e~ 1)1} 4y reads 419 and (16

e[(r—r")]

0

d’¢ _ 4meZxoNkoHo dy

Since the concentration of magnetic particles is small in the _22:X ¢ P dz (23
expansion with respect tp,Hg we will calculate the funda- d B
mental solution up to the first nonvanishing term. Thus, the 5 12
first correction of the fundamental solutiofl7) will be 9 M d5‘/’+477nk0X0H0 d‘s‘/’_47Tezk)(0”k0"'0q5 —0
found from the set of equations dz| 70 dz kgT dz kgT '
(24)
4meZxoNko
Agpt=x?¢'— T(HOV)(Wl, (18)  Solution of Eq.(24) gives
4me NoH
1 4meZXoNko 0 2meAXoNkoM o
poA oy =————(HoV) ¢ (19 déy kgT 4
. dz AmnoxoHS
Accounting for the condition of the total electroneutrality Mot kgT
according to which the total charge of the particles surround-
ing the fixed point charge is exactly equal to it whereas carthat as a result Eq23) can be rewritten as follows:
ries an opposite sign, the fundamental solut®mp to the
second-order term ioHo as determined from sét8), (19) d?¢ eN?
ields (hy=Ho/H — = Xz | (25)
yields (ho=Ho/Ho) d7 4mnioxoHo
) ROt T
1 , EXP(— xT) B
G=Gy+ 5| — (V) ———— ) . .
mox“ | x r Solution of Eq.(25) accounting for the corresponding bound-
ary conditions yields
+ 55 (hoV)2exp(—xr) |, (20) .
p= -
where 5 ex
AT Aot
417 xoNko N ThkoXoMo
= .1 Mo fo kgT
EkBT B
Since the fundamental soluticd depends on the magnetic ) en?
field strength and its orientation with the respect to the sur- Xexp[ —z X~ ﬁ . (26
face, the relatiorf20) allows to calculate the dependence of TNkoXoMo
- - Hot+ ————
the curvature elasticity of a membrane on the magnetic field KgT

strength. The curvature expansion techniffilewill be used

for this purpose in the next part of our work. To illustrate the As it is possible to see from relatiof26) at low magnetic-
physical meaning of the relations obtained here we shall caffield values when the magnetodipolar interaction parameter
culate the fundamental solution in one-dimensiofilD)  nyox2H3/ksT determined by the mean distance between
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magnetic particles is small, the application of a magnetic

field diminishes the effective screening paramegeby the ¢=f G(r—r")x(r")ds, (29)
following value:

where the unknown functio, using the theorem for the

er’ 27) normal derivative of the single-layer potential
2pox’
gl oG R
which corresponds to the increase in the characteristic Debye €on X =-2m7%+eP %(r—r )2(r')dS

screening length. Maximum diminution of the screening pa-
rameter is achieved at large magnetic-field values and equatain be found from the following boundary integral equation
Ame?zin,,/ekgT, i.e., at large magnetic-field values screen-(P denotes the Cauchy principal value

ing is determined only by presence of ions in an electrolyte . G
solution: S=20+ ﬂePJ So(=rX(Mds. (30
, Ame’zing  Ame’Zin,, 4we’Z’n

X EkBT B ekBT + GkBT

Equation(30) is useful for obtaining the expansion for the
free energy in relation to the curvature of a surffk De-
The last result can be explained in physical terms in thdails of the calculation are given in the Appendix. Expression
following way, the magnetic force acts on charged magnetidor the free energy up to the second-order terms in the cur-
particles at their nonhomogeneous distribution near &ature gives

charged membrane. The said force returns particles to a

2y 2|2
membrane, thus diminishing the contribution of polyions to _pFo_ 2w \hy, i i+ i ds
the screening of the charge of a membrane. Since the wox>  2x%) \Ri Ry
strength of the interaction of charges on a membrane de-
pends on the screening length, then due to its dependence on 27a\? Zjhén 1 1\% 3 1
the magnetic field strength and its orientation the magnetic - 5 3l R, "R, 2.2R.R
field will influence the elastic properties of a membrane as Kox 16x ! 2 Ax" e

well. These effects are considered in the next part of the 3 1 3 1
work. At the end of this part we would like to mention that - Sg—— —h3 —
expanding the fundamental solution for 1Bg. (26)] up to 4x® 'R 4x® RS
the first-order terms fok? yields

ds, (31)

where &, 77 axis of local Cartesian coordinates are directed

20 2 14 yz along the principal directions of a curvature. The result given
GWM=¢p=—exp—x2)+ 5 expl—xz) by expression31) draws attention due to several interesting
€x mox® X issues. The first one is the increase in the curvature elasticity

. o . . . constant depending on the angle between the normal to a
The last relation coincides with the result obtained by inte- P d g

. . X ; membrane and a field. The value of the increase in the elas-
gratlpn of the fundgmental solution for three dimensions ac’[icity constant according to relatiai31) equals
cording to expressioR21).
21 mo®\? hj,
IV. CURVATURE ELASTICITY CONSTANTS DEPENDING AKCZZ — 3 3- (32
ON THE MAGNETIC-FIELD STRENGTH HoX— X

Above we have arbitrarily assumed that magnetic par-The obtained result differs only by a numerical coefficient
ticles are located in the region surrounding a membrandrom the increase in the curvature elasticity constant that
Other cases can be arrived at by simply rearranging a|gebraﬁpuld be found from the expression of the electrical contri-
signs. Calculation of the electrostatic energy of a membranBUtgl"I[tsosﬂhe curvature elasticity constant of the one-sided

model[3,

F= lgf o¢pdS 37o2

2ex®

in the one-sided model can be reduced to the solution of the

Neumann problem with the following boundary condition: py supstituting the effective value of the screening parameter
found above when considering the charge screening of a pla-

_ 6@ =470 (29  har membrang9,10]:
an
' en?h?
for a set of differential equationel5) and (16). Using the Xe= X o ox (33
fundamental solutioi& this problem can be solved by writ-
ing the single-layer potential which for the elasticity constant gives
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9702\ 2h2 By introducing the spontaneous curvature according to rela-
AKC=—50n- tion (35), relation(34) can be written as follows
Apox
Thi lue differs f th lue found f th t 1K 1+1 ! Al 2+K ! Kh21
is value differs from the value found from the curvature — SK RTR R R GR,R, Ka OgR_i

expansion by a coefficient 7/3. It is interesting to note that
the same procedure carried out for the Gaussian curvature
elasticity constant gives exact result. Indeed, if, in the case —K.h2 i 37)
when the field is normal to the membrane, we substiulby

its effective value(33) in the expression for the Gaussian
curvature elasticity constar8,6] wo?/ ex®, we obtain the where the anisotropic curvature elasticity modulus is defined
value decreased bgKg=3mo?\?2uox°—the same that gas

follows from the curvature expansion. It is important to re-

mark that the decrease in the Gaussian curvature elasticity 3702\ 2

constant does not depend on the orientation of a field with Ka=—5, (38
respect to a membrane. The third effect that follows from our 2pox

analysis is related to appearance of the anisotropy of the

bending elasticity in a tangential plane of a membrane. The 372

physical reason of this effect consists in the redistribution of Ke=2_———7 +AK,, (39

magnetic polyions near a charged membrane due to the rise 2ex

of magnetic forces at the bending of a membrane. We can
derive the expression for the spontaneous curvature of a T
membrane from relatiori31) accounting for the curvature KG:Ze 3 —AKeg, (40
elasticity constant 30%/2ex® of a charged membrane in the X
one-sided model. By selecting a model in which the surfac . :

: : 4 - - but the change in the spontaneous curvature due to the action
density of charges on either side of a membrane is identical S i

. . df a magnetic field can be expressed as follows:

whereas the magnetic polyions are located only on the one
side of a membrane, i.e., on the outside of the vesicle in the

0_2

1 e)\zezhgn

considered case, the total contribution to the surface density A—=—— 00 (41)
of the free energy of a membrane reads Ro  3mox
1 3702/ 1  1\2 21moAA2h2 (1 1\2 Relation(41) gives the same result as obtained by substitut-
— _(_ + — —0”(_ _) ing the effective value of the screening constant due the ac-
2 2e* \Ri Ry 8ox” Ri Ry tion of a magnetic field as calculated for a planar membrane
(the small difference betweep and y; is neglecteflin the
2y 2|2 i
_M(i+1)+ﬂ relation (35):
mox* Ri Re wox® 2 2
exchy
31 31 3,1 XN D

Thus, the conclusions obtained within the framework of the
planar mode[9,10] concerning the influence of a magnetic
field on the spontaneous curvature of a membrane coincides
ith that obtained from the curvature expansion. Relations

(34

To interpret the conclusions following from relatid84) it
shogld be taken into account that due to .the Présence Gy ne spontaneous curvature of a membrane obtained for
polyions only from one side of a membrane it already exhib-,

it : t hich Id b dbvt e case currently under our consideration when magnetic
IS a spohtaneous curvature, which could be expressed by lES%rticles are located outside a vesicle just by the change in
following relation[3,6] (x.; are screening constants of the

X o 4 . : signs in relation$36) and(41) gives the corresponding rela-
exterior and interior regions of a vesicle, respectiyely tions for a more usual case when magnetic polyions lie in-
side a vesicle, i.e., in the absence of a magnetic field it is
i: _ E(X —xi) (35) energetically more advantageous for a membrane to bend in
Ro 3e A the direction of the part that contains magnetic polyions due

to stronger screening there. As an external field moves mag-
Accounting for expression of the screening constant of ametic polyions against the membrane, the characteristic

electrolyte with magnetic polyions gives screening length for the sections of a membrane perpendicu-
lar to a field is increased and a membrane flattens. According
2 to relation (41) respective diminishing in the spontaneous
1 1 ZNyo ' ” X
R~ 32 2. (36)  curvature can be calculated in accordance with the following
0 ZiNiotZZn_g relation:
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1 ex?hi, RE(3 cog—1)
A— = (42) r=R+A§:R+#.

_ (43
Ro 3uox

wheree? is positive if deformation leads to a prolate shape

Since the change in the spontaneous curvature depends 8Ad Negative for the case of the oblate deformation. The
the angle between a membrane and the direction of the mag@dnetic energy of a ferrovZeS|cI(39 assuming its ellipsoidal
netic field strength the spontaneous curvature of a membrari'@Pe — reads (N(e)=[(1—e)/2e"][In(1—e)/(1+e)—2e],
becomes anisotropic. Besides the anisotropy connected witffhich is the demagnetizing field coefficiertjs the eccen-
the spontaneous curvature there is, as it follows from thdricity of a prolate ellipsoid

relation(37), another anisotropy connected with the bending

energy in the magnetic field having the components tangen- En=—= Vi
tial to the membrane. The relati¢87) shows that the energy 2 [1+(uo—1)N(e)]
of bending in the direction along the magnetic field lines is
lower than that in perpendicular direction. Anisotropy of the

1 XoNkoH§

(44)

and for small deviations from the spherical shagé<1)

bending energy is remarked also in DNA-cationic lipid gives

complexes—the stacks of the membranes intercalated with —1)H2 —1)2H2 2

DNA strands[13]. The simplest phenomenon by which the E,=— (o~ 1) Ov— (1o~ 1)7Ho —V, (45)
effects considered above could manifest themselves is con- 8w 4m 15

negtedtr\]/wth ?n ob;ate—protlate ls?.agla(;a trans;t:cj){lgﬁ{)]a Vgs'dﬁlhich describes the trend of the prolate deformation under
under the action of an external Tield reporte and - the action of a field. It is possible to show that the contribu-

considered there within the framework of the planar apProXlyinn of the anisotropic part of the curvature elasticity modu-

mation. Several simple relations for description of this effectIus determined by relatiof32) up to the first order ine?

follow in the next part. It should be noticed that due to theexactly equals zero. Another mechanism that induces the

variation in the screening length in the presence of a field %hape transformation in a ferrovesicle is related to the part of

change n the su_rface energy of a planar membrane takea’?lisotropy of the curvature energy that is described by the
place. Since the field effect depends on the angle betweenlgst two terms in relatior(31). This part of the curvature
field and the normal to a membrane it leads to the anisotropgnergy up to the first order ie'z gives

of the surface tension. Since this effect is compensated by
the local anisotropic deformation of a membrane it can be 16m2 o2\ 2

neglected in the following consideration of the prolate-oblate E.= e? (46)

a
transition. S MoX5

and by introducing the parametea=zin,,/(z2n.,
V. PROLATE-OBLATE TRANSITION IN EXTERNAL .+zz,n,o) characte.rizing the contribution of magnetic poly_—

FIELD AND COMPARISON WITH EXPERIMENTAL DATA ions to the screening pgnstant and electrostatic contribution

to the curvature elasticity modulu§t=3wa? ex® can be

A ferrovesicle with the membrane whose properties argewritten as follows:
not influenced by a magnetic field under the action of an
external field elongates in the direction of a fi¢8]. In this 16w
case when a magnetic field modifies the interaction between Ea=EKCaMoe2. (47)
a charged membrane and magnetic polyions situation be-
comes more complicated since the trend of elongation of ghe parameterM0:4wn§0X§HS/,u0nkokBT characterizes
ferrovesicle along the field direction due to the diminishingthe ratio of the magnetic and osmotic pressures and thus
demagnetizing-field effects now is competing with the trenddescribes importance of magnetic forces in bringing about
of the flattening of a membrane near poles caused by thghe change in the membrane charge screening under the ac-
diminishing spontaneous curvature there. Additional contrition of a magnetic field. From relatio®7) one could see
bution to the vesicle shape transformation can be attributeghat the anisotropy of the bending modulus favors an oblate
to the field-induced anisotropy of the bending modulus of ashape ¢2<0) and thus competes with the magnetic energy
membrane. Complete analysis of the resulting phase diagragausing elongation of a ferrovesicle along the direction of a
is quite complicated and will be the subject for further inves-magnetic field. Even a more important contribution favoring
tigations. By using simple energetic arguments we intend t@n oblate shape arises from the anisotropy of the spontaneous
consider eventual competing mechanisms behind the feturvature of a membrane. The curvature elasticity energy
rovesicle shape transformations. Let us assume that a fer-
rovesicle undergoes the axisymmetric shape transformation 1 . 1 1 1 12
that in the spherical system of coordinates with the polar axis EKCJ R. + R, R. AR_ ds (48)
1 2 0 0

running along the field direction may be described by the
following equation ¢ is the modulus of the radius-vector to accounting for the following relationsy{ is the screening
a point on a vesicled is the angle in the spherical system of constant of an outer electrolyte solution without magnetic
coordinates polyions yields
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1 xa 3
Ry 3 25|
and z 2r
1y
% 15}
1 e)\zhgn 2 L
R, 3
0 MoXs 05 L
up to the first-order terms foe? at shape deformation de- 0
scribed by relatior{43) when 06 08 1 12 14 16 18 2
logyo(c)

h2= cog§—2€? cogf sirfg -
FIG. 1. Dependence of oblate-prolate transition upon electrolyte

concentration. Open circles correspond to oblate shapes, filled

at y.a>R™! gives \ .
circles to prolate shapes. Electrolyte concentratiom mmol/I.

32
ESP"=const- mKEM oa?( XSR)24—05e2. (49 of the ferroparticles the magnetic susceptibility can be ex-
pressed by the Langevin formula
Sincey R>1, the contribution of the anisotropy of the spon- nuaM2\V/2
taneous curvature to the formation of oblate shape is more K= M' (53
important than anisotropy of the bending modulus. As it fol- BkgT

lows from relations(45) and (49) there are two competing

mechanisms leading in dependence on the physical condf!h€reMs is the saturation magnetization of ferromagnetic
tions to the prolate or oblate vesicle deformation. By theqo:lmde;\l partllclgs butv,, is the volume of a colloidal par-
comparison of the energy of magnetic interactiof® with  ticle: Thus relation(52) reads

the energy value due to the variation in the spontaneous cur-

2 4
vature [Eq. (49)] the following equation for the prolate- E: 8mokgT Zy (54)
oblate transition line is obtained K e‘/471'ekBTM§V’23 [2.(z,+2_)]7%5?
32 (mo—1)? HSV Values forR/« in electrolyte concentration dependence in

TKEMoa?(xsR)? (50)

logarithmic coordinates are given in Fig. 1. The following
values of the physical parameters are ugédlQO]: Mg
Inserting the values of the physical parameters the last rela=360 G, diameter of the particles=1.2 nm, the colloidal

405 47 15 °

tion transforms into particles have z,=25 elementary charges andr
=400 esu/crh The last value corresponds to the surface
8mo? ZiNko area per elementary charge=1.2x10 *? cn?, which

(51 means that about 1% of all lipids are charged. Experimen-
tally measured values dR and « tabulated in[9,10] are
shown in Fig. 1 by filled(the prolate shapeand open(the
oblate shapgecircles. Although the data shown in Fig. 1 are
concentrationc=n_, the condition of the electroneutrality rather scarce, nevertheless, they give the cIea( !ndlpatlon that
= - . the proposed model of the oblate-prolate transition is reason-
Z.Nn,p=2z_n_g allows one to express the critical radius of : . ; )
L able since the magnetic and electrostatic energies of the de-
the oblate-prolate transition in dependence on the electrolyt]e ' .
. i ormed vesicle corresponding to the measured valueR of
concentration as follows: . )
and k are of the same order of magnitude in the range of the
8o A0 electrolyte concentration where oblate-prolate transition
R= o k' k0 _ (52) takes place. Accounting for many factors influencing the be-
3eV4mekgTug [24 (2, +2_)]%%c5? havior of magnetic vesicles that does not seem to be trivial
result. As it is possible to conclude from Fig. 1 that the data
Several physical parameters are introduced in(B8), sur-  points reflect the trend of the prolate deformation if the elec-
face charge density on the membrane,, is concentration trolyte concentration or the radius of a vesicle grows. Be-
of the colloidal particles in the membrane. Since due to unsides we should remark that many more nontabulated data
certainties of the colloidal particle entrapment at the vesicleoints given in[9,10], for example, in Fig. 11.6 df9], cor-
preparation processg, varies considerably from a vesicle to respond to that conclusion reasonably well. It should be re-
vesicle, it must be determined for each vesicle separatelymarked as well that for considered case of weak magnetic
For this purpose magnetophoretic mobility of each fer-fields the condition of the prolate-oblate transition does not
rovesicle in the magnetic field of the given gradient wasdepend on magnetic field strength. Existing experimental re-
determined in9,10] and magnetic susceptibility of the col- sults[9,10] are given for a single fixed value of the magnetic
loidal solution obtained. Due to the very low concentrationfield strength 400 Oe.

3e 47T€kBT/.LO (Zin+0+ Zz_n_0)5/2

In experiments described {9,10] trisodium citrate is used
as electrolyte. By introducing the notation for the electrolyte
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VI. CONCLUSION The fundamental solutiof0) can be expressed as follows:

The influence of a magnetic field on the membrane charge G=Gy+ Gy,
screening by an electrolyte solution with magnetic polyions
is considered by taking into account the magnetic field nonywhere
homogenity arising due to the repulsion of charged magnetic
particles from a charged membrane. It is shown that a mag- G(r)=(hoV)2H(r) (A3)
netic field increases the effective screening distance for those
parts of the membrane that are noncollinear to the magnetignd the following expression is valid for the functiet(r)
field direction; maximum increase takes place for the parts
that are normal to a magnetic field. It is demonstrated that A% |exp—xr) 1
due to the anisotropy of the effective charge screening dis- H= 2 —2r+ Eexq—xr) : (Ad)
tance, the elastic properties of a membrane become aniso- Hox X

tropic. The_ curvature elasticity modulus due.to increase ir]_:,y introducing the Cartesian set of coordinates wjtiaxis
the screening length grows to reach the maximum value fogjong the external normal of a surface in the point with
those parts of a membrane that are normal to a field. Theygiys-vector and¢, » axes along the principal directions of

spontaneous curvature too becomes anisotropic, taking thfe curvature, the surface equation near the point with the
minimum value for these parts of a membrane that are nofry4iys-vector reads

mal to a magnetic field. Thus, deformation of a ferrovesicle

under the action of a magnetic field is determined by two r'=r+(& 9,0,
competing mechanisms—elongation of a ferrovesicle along

the magnetic field direction due to the tendency to diminishwhere

the demagnetization-field energy and to transform into an

oblate shape due to the decrease in the spontaneous curvature . & Uj
for these parts of a membrane which are normal to an exter- £=- 2R; 2R,

nal field. The boundary in the parameter space between pro-

late and oblate shapes is found from the elastic properties ¢R1,R, are the principal radiuses of the curvajurExpres-
a membrane in a field, which are calculated by the curvatursion(A3) for G, gives H' denotedH derivative with respect
expansion of the free energy. The conclusions from the theto r)

oretical model are in qualitative and quantitative agreement

with the available experimental results. H’ [ho(r—r")]? ) (ho(r—r’)) 2 ,

2

Gj_:
[r—r'| [r—r'|3 [r—r'|

APPENDIX

As a result the following expression of the fundamental so-

Solving integral equatiot30) by the iterative procedure . . .
g e d 30 by X lution up to the terms of the second order in the curvature is

we obtain the following curvature expansion for the function

s obtained p= &+ 79):
1 (G H’ H/)(h0§§+hon77)2
— C(r— ! / G =—+|H'-—| ————
p3 20'+6F‘Ef ﬁn(r r'20dS 1=, P 2
1 oG 1 G H'\ 2honl(hoeé+ho,m)
+—6Pf —(r—r')dS’—ePf —(r'=r")20dS". + H”——) o> o6 Oy
2 an 2 an’ p p?
(AD N H_’)’} 2 _(H,,_ H_’)(h0§§+hon77)2§2
As a result the free energy reads pl2p P p?
, H’ h(2)n§2 ., H'\’
F=0° fdsJ G(r-r")ds HH' = —|——+|H"——
P/ p p
2 2
1 (4G 1 2% (hogé+ho,7m)
+ef dsf G(r—r’)dS’sz ﬁ(r’—r”)ds” XE;T- (A5)

1 G Now, on the basis of expression for the free enefgy.
+ezf dsf G(r—r’)dS’—Pf — (A2)] and relation(A4) the curvature expansion of the free
2 an’ . . . .
energy may be obtained. Since the concentration of magnetic
1 JG particles in a ferrovesicle is small, we will find this expan-
X(r'_r")dsf_pf —(r"—r"ds"|. (A2)  sionup to the first-order terms ¥ (d= denotes integration
27 J on" along the plane tangential to a membrane
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Up to theA? the first-order terms in the curvature expan- gz 1 72
sion are I,+0o fdsf Gl — 5—2 a3
2
FW=¢eo? | dS| Go(r— ’dS’iP a—Gl '—r"dSs’
=€ o(r=rdSZZP | — (=1’ +eaf —Pfe r—r)dS’—P
1 dGq
2 - ;. A B, ’ &G l (9G
+eo def Gl(r I‘)dS om Pf an’ (r r)ds Xf_/l(r/_rr/)dsnz_PJ'_,?(rn_rm)dsm
on w Jn

(AB)

1 4G
The first term in the last relation is readily transformed into +ZPJ' Go(r=r)Hds _Pf ——(r=rds

, , 1 &Gl , " , 1 faGl "__em " 2 ZJ 1
f de Go(r—r )dSEPJ W(r —r")dS 27TP n”(r r"dS” | +e“o dSZWP
1 1 G, J f 4en
= - g ) —=(r'—r"dS’ X | Gy(r—r dS’—P —(r'=r")ds’
fdsz(fdshpf Go(r r)(m, (r'—r"ds i(r=r’) ( r’)
1 G, 1 J'ﬁGO
. AN I U X—P - rn_rw dsm, AlO
+fd827TPJ Go(r r)&n, (r r)dS) 5 an,,( ) (A10)
where
fds—f Go(r—r’ )dS’—P
' H’
9€ Ry dn
1 1 1 X(hog‘f+hon77)2§2+(H,,_ H_’) hgnd?
—deEJ Go(r—r )dSE R_1+R_2)leds P4 p P2
(A7) H'\" ¢ (hoeé+ho,m)?
(H”—— 5_( 0eé 207777) . (ALD)
Then using the relations P p

The third term in the last expression using the relations

2

deGo(r—r’)=7, G .
0 //__l

[ Snes=- LG g

1 1
—+—)<r>,

f dE//&GO( ! //) W( 1 + 1 )( /)
—(r'=r")=——| =+ = |(r"),
an’ X\Ri Ry

ex\Ry Ry

dGq
J’ —(r—-ndS'=-—
an’

and

2T
! fdze Ly N (A8) j BClrm0=y
_ 1=—h3, ——
2m 2X " pox® .

can be transformed into

as found for calculation of the fundamental solution for 1D

case for the first-order contribution to the free energy we 5 9 1 dGy "
obtain — 0| dSG(r—r) EP W(r_r)dg
2ma®\?h}, 1 1 1 J 9Gy 1
(1):_— / +—p| —=(r=nds |— | —+ —|(ndy.
] pox®  2x° (Rl Ry s A9 2 ﬂn’( ) 2ex\R;y Ry ™
(A12)

In a similar way the next-order terms are calculated. Second-
order terms read By applying the relations
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3Gy 3Gy £ 96y 7y Gy 27 (=( 3 3 2 \(H"\’ 27,
—=— Il:—f —++ —| p*dp+—nhg,
on' 9 Ry dE R, dn’ 64Jo\R? R3 RiRy/1p 4
= H e 3 3
dG, G, X . H'— — 8R2 8R2 8R1 dp— 671'ho§
an” g’
Xme” H’ 51 1l+2 1 q
. . M e e bR
the last expression can be rewritten as 2
© H/
j -]
2f2”(1+1)2ds'1fed2 : '
o —lg To 5= .
2y?\Ry Ry "T2m) TH 51 11 2 1
64RZ 64RZ  6ARR, dp (Al4)

To arrive at the contribution of the second-order terms in the 4. The foll ¢ | lati6As 3
curvature expansion, (14 /G,dX from the expression ar%z;&) e following integrals appear in relatignss3)
(A8) and the following relations:

jw(H’)’ apm 12

fG(1§2+1772

N2p2" 22

2R; 2R; fw<H” H,)d 12
0 p P Xsl

m(* a *
=—2f p?H'dp+ —2J p?H'dp+ Whég

R1/0 R3Jo After regrouping of terms the contribution of the second-
order terms to the free energy reads

daz

” 2 ” H’ 3p3 pS
X OP H"—— 8R2+8R2 dp+7Tho,7 J* 277.0.2)\2 Zjhcz)n( 1 1)2 3 1 3 h2 1
H [ p° o8 pox® | 16¢° \R1" Ro|  4y3RiRy  4)® *R?
<) H"‘—) dp,  (AL3)
’ e BRZ) ’ = kg as
4> "R}
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