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Magnetic-field-induced anisotropic curvature elasticity of a vesicle membrane
containing magnetic polyions

A. Cēbers
Institute of Physics, University of Latvia, Salaspils-1, LV-2169, Latvia

~Received 26 July 2000; published 29 March 2001!

Interaction between a charged membrane and the electrolyte solution containing magnetic polyions is con-
sidered. A self-magnetic field, which arises due to the nonhomogeneous magnetic particle distribution near a
charged membrane increases the effective charge screening length for the parts of a membrane normal to a
magnetic field. The anisotropy of elastic properties of a membrane depending on the screening length is
calculated on the basis of the curvature expansion. It is shown that due to diminishing of the spontaneous
curvature for the parts of a membrane normal to a magnetic field there are two competing mechanisms of the
ferrovesicle shape transformation under the influence of a magnetic field—the formation of a prolate shape
orientated along a field due to the diminishing action of the demagnetizing field energy and the deformation to
a oblate shape due to the decrease in the spontaneous curvature of the parts of a membrane normal to a field.
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I. INTRODUCTION

The interaction between colloidal particles and me
branes is an active area of research. In@1,2# various aspects
of those interactions in relation to steric effects are cons
ered. On the other hand, an important role in behavior
lipid bilayers or membranes is played by electrostatic forc
The elastic properties of membranes due to electrostatic
teractions have been considered in several papers@3–6#. A
review of fascinating phenomena connected with the elec
static interactions of the macroions has recently appeared@7#.
A new object, ferrovesicle or vesicle containing dilute co
loidal solution of single-domain ferromagnetic particles,
introduced in@8# and its behavior under the action of a
external field is studied. It is found that thermal fluctuatio
of a membrane are flattened with increase in the tension
membrane with an applied field and ferrovesicle elonga
along the field direction forming a prolate shape@8#. By
studying the ferrovesicles for different ionic strengths of t
interior colloidal solution it has been established in@9# that
the ferrovesicle depending on the ionic strength can take
oblate or prolate shape. Since magnetic colloidal particles
charged it is quite natural to assume that the transition to
oblate shape occurs due to modification of elastic proper
of a membrane under the influence of a magnetic-fie
caused change in the length of Debye screening of the in
nal electrolyte solution containing magnetic polyions@9#.
Debye length calculation depending on the magnetic fi
strength for a planar membrane as well as existing theore
relations for various electrostatic contributions to the ela
properties of membrane has supported this assump
@9,10#. Nevertheless, the approach based on application o
expression of the Debye length derived for a planar me
brane for calculating the energy of a curved surface could
inconsistent in the sense that some terms arising due to
interaction of charged magnetic particles with a curv
charged membrane could be omitted. Values of numer
coefficients obtained in such a way could serve only as ro
estimates. Full analysis of interaction of charged magn
1063-651X/2001/63~4!/041512~10!/$20.00 63 0415
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particles with the charged curved membrane in an exte
magnetic field is carried out in this study. Although resu
obtained before in approximation of the planar membra
are confirmed with accuracy up to numerical coefficien
nevertheless, several new effects not mentioned before
demonstrated—the anisotropy of the bending elasticity i
tangential plane of a membrane and dependence of
Gaussian curvature elasticity constant on the magnetic fi
strength except its direction as well as others. In Sec. II,
free energy of a charged membrane surrounded by an e
trolyte solution containing magnetic particles is introduce
Fundamental solution of equations describing the interac
between the charge and the electrolyte solution contain
magnetic ions is obtained in Sec. III. On this basis the
pendence of the Debye length on the magnetic field stren
for a planar membrane is established. The curvature ela
ity energy of the charged membrane interacting with an e
trolyte solution containing the magnetic polyions depend
on the magnetic field strength and its direction is derived
Sec. IV. Some conclusions concerning the ferrovesicle sh
transformations according to the present model and comp
son with available experimental data are given in Sec. V

II. FREE ENERGY OF THE CHARGED MEMBRANE IN
THE ELECTROLYTE SOLUTION WITH MAGNETIC

POLYIONS

Due to the electrostatic interaction between a char
membrane and magnetic polyions their concentration n
the membrane becomes nonhomogeneous. When a mag
field is applied the perturbation of the magnetic field tak
place. The energy of the magnetic field perturbation mus
included when describing the interaction of magnetic po
ions with a membrane. If accounted for the electrical fie
energy, the mixing entropy of ions and the self-magne
field energy of the nonhomogeneous distribution of magn
polyions within the framework of the linear Poisso
Boltzmann approach the free energy could be written as
lows:
©2001 The American Physical Society12-1
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F5
e

8pE ~¹f!2dV1kBTE n1 ln
n1

n10
dV

1kBTE n2 ln
n2

n20
dV1kBTE nk ln

nk

nk0
dV

2kBTE ~n11n21nk2n102n202nk0!dV

1
1

8pE m0~dH!2dV ~1!

where n1 and n2 are the concentrations of positive an
negative ions,nk is the concentration of magnetic polyion
and n10, n20 , and nk0 are their values far away from
charged membrane. The potential of a electrostatic fieldf
and the field strength of the perturbed magnetic fielddH
shall satisfy the following equations:

eDf524pr524pe~z1n12z2n21zknk!, ~2!

m0div~dH!524px0~H0¹!nk , ~3!

where the density of electrical chargesr is equal to
e(z1n12z2n21zknk), e is the absolute value of an elec
tron charge,z1and z2 are valencies of cations and anion
zke is the charge of a magnetic polyion,e is the dielectric
permeability of a fluid,m05114px0nk0 is the magnetic
permeability of an initially homogeneous magnetic collo
and x0 is the magnetic susceptibility of a single particl
Since the concentration of magnetic particles in a f
rovesicle is very small, the dependence ofx0 on the concen-
tration of magnetic polyions may be neglected. In the c
when the magnetic polyions are absent the expression~1!
coincides with the expression for the free energy of a e
trolyte solution during its interaction with a charged me
brane@11,12#. Let us calculate the variation of the free e
ergy ~1! accounting for Eqs.~2! and ~3! and the boundary
conditions on a charged membrane (n is the external norma
to a membrane,s is the surface charge density on a me
brane!:

2en¹f54ps, ~4!

dce5dcv, ~5!

n~m0dHe14px0H0nk!5ndHv, ~6!

where it is assumed that the exterior region of a vesicle
rounding a charged membrane contains magnetic partic
Quantities in the interior region of the vesicle are denoted
the indexv, whereas on the outside by the indexe. Since the
dielectric permeability of water is much higher than that o
lipid bilayer, the so-called one-sided model with opaq
boundary conditions is considered@Eq. ~4!# when the electric
field generated by the charges on an exterior side of a m
brane does not penetrate the interior region@3,12#. Varying
the free energy in relation ton1 ,n2 ,nk and accounting for
the electric and magnetic field equations~2!, ~3! and bound-
ary conditions~4!, ~5!, and~6! lead to
04151
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dF5E fdsdS1E dn1S kBT ln
n1

n10
1ez1f DdV

3E dn2S kBT ln
n2

n20
2ez2f DdV

1E dnkS kBT ln
nk

nk0
1ezkf2x0H0dHDdV ~7!

From relation~7! the following equilibrium conditions fol-
low:

kBT ln
n1

n10
1ez1f5const, ~8!

kBT ln
n2

n20
2ez2f5const, ~9!

kBT ln
nk

nk0
1ezkf2x0H0dH5const. ~10!

The last relation expresses the balance between ther
electric, and magnetic forces acting on magnetic polyio
The concentrations of ions in an electrolyte solution a
magnetic polyions can be expressed from relations~8!, ~9!,
and ~10! as follows:

n15n10 expS 2
ez1f

kBT D , ~11!

n25n20 expS ez2f

kBT D , ~12!

nk5nk0 expS 2
ezkf

kBT
1

x0H0dH

kBT D ~13!

By linearizing the last relations with respect to the ratios
the electric and magnetic energies of particles to the ther
one we obtain the linear Poisson-Boltzmann model. Wit
the framework of this model the potential depends linea
on the charge density of a membrane. Thus, by carrying
the quasistatic charging process of a membrane in relatio
its free energy in the surrounding electrolyte solution
obtain

F5 1
2E fsdS ~14!

It should be pointed out that the obtained expression for
free energy of a membrane coincides with those used in
ferent contexts previously, see, for example,@6,11,12#.

III. FUNDAMENTAL SOLUTION OF COUPLED SET OF
EQUATIONS FOR ELECTRIC AND MAGNETIC

FIELDS

Introducing the potential of a magnetic fielddH5¹dc
and linearizing the relations~11!–~13! with respect to the
energy ratios after substitution of the linearized expressi
2-2
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into equations~2! and ~3!, we arrive at the following set o
coupled equations for the electric and magnetic field pot
tials

S x25
4pe2z1

2 n10

ekBT
1

4pe2z2
2 n20

ekBT
1

4pe2zk
2nk0

ekBT D ,

Df5x2f2
4pezkx0nk0

ekBT
~H0¹!dc, ~15!

m0Ddc5
4pezkx0nk0

kBT
~H0¹!f2

4px0
2nk0

kBT
~H0¹!2dc.

~16!

In the absence of a magnetic field the fundamental solu
of the set~15!, ~16! reads

G05
exp$2@xu~r2r8!u#%

eu~r2r8!u
~17!

Since the concentration of magnetic particles is small in
expansion with respect tox0H0 we will calculate the funda-
mental solution up to the first nonvanishing term. Thus,
first correction of the fundamental solution~17! will be
found from the set of equations

Df15x2f12
4pezkx0nk0

ekBT
~H0¹!dc1, ~18!

m0Ddc15
4pezkx0nk0

kBT
~H0¹!f0 ~19!

Accounting for the condition of the total electroneutrali
according to which the total charge of the particles surrou
ing the fixed point charge is exactly equal to it whereas c
ries an opposite sign, the fundamental solutionG up to the
second-order term inx0H0 as determined from set~18!, ~19!
yields (h05H0 /H0)

G5G01
l2

m0x2 F 1

x2
~h0¹!2

exp~2xr !

r

1
1

2x
~h0¹!2exp~2xr !G , ~20!

where

l5
4pezkx0nk0

ekBT
H0.

Since the fundamental solutionG depends on the magnet
field strength and its orientation with the respect to the s
face, the relation~20! allows to calculate the dependence
the curvature elasticity of a membrane on the magnetic fi
strength. The curvature expansion technique@6# will be used
for this purpose in the next part of our work. To illustrate t
physical meaning of the relations obtained here we shall
culate the fundamental solution in one-dimensional~1D!
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G(1) from the relation~20! for the case when a magnetic fie
is perpendicular to the charged plane.G(1) is expressed as
follows:

G(1)~z!5E G~zez,r!dS~r!, ~21!

wherer is the radius vector to the point in a plane from t
projection of the point at a distancez from the plane. By
carrying out the integration we obtain

G(1)~z!5
2p

ex
exp~2xz!1

2pl2

m0x2

1

2

11xz

x
exp~2xz!.

~22!

Of course, expression~22! for the fundamental solution in
1D case coincides with the expression of the fundame
solution found from Eqs.~15! and ~16! which in that case
reads

d2f

dz2
5x2f2

4pezkx0nk0H0

ekBT

ddc

dz
, ~23!

d

dzS m0

ddc

dz
1

4pnk0x0
2H0

2

kBT

ddc

dz
2

4pezkx0nk0H0

kBT
f D 50.

~24!

Solution of Eq.~24! gives

ddc

dz
5

4pezkx0nk0H0

kBT

m01
4pnk0x0

2H0
2

kBT

f

that as a result Eq.~23! can be rewritten as follows:

d2f

dz2
5S x22

el2

m01
4pnk0x0

2H0
2

kBT
D f. ~25!

Solution of Eq.~25! accounting for the corresponding boun
ary conditions yields

f5
2p

eAx22
el2

m01
4pnk0x0

2H0
2

kBT

3expS 2zAx22
el2

m01
4pnk0x0

2H0
2

kBT

D . ~26!

As it is possible to see from relation~26! at low magnetic-
field values when the magnetodipolar interaction param
nk0x0

2H0
2/kBT determined by the mean distance betwe
2-3
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magnetic particles is small, the application of a magne
field diminishes the effective screening parameterx by the
following value:

el2

2m0x
, ~27!

which corresponds to the increase in the characteristic De
screening length. Maximum diminution of the screening p
rameter is achieved at large magnetic-field values and eq
4pe2zk

2nk0 /ekBT, i.e., at large magnetic-field values scree
ing is determined only by presence of ions in an electrol
solution:

x22
4pe2zk

2nk0

ekBT
5

4pe2z1
2 n10

ekBT
1

4pe2z2
2 n20

ekBT

The last result can be explained in physical terms in
following way, the magnetic force acts on charged magn
particles at their nonhomogeneous distribution near
charged membrane. The said force returns particles
membrane, thus diminishing the contribution of polyions
the screening of the charge of a membrane. Since
strength of the interaction of charges on a membrane
pends on the screening length, then due to its dependenc
the magnetic field strength and its orientation the magn
field will influence the elastic properties of a membrane
well. These effects are considered in the next part of
work. At the end of this part we would like to mention th
expanding the fundamental solution for 1D@Eq. ~26!# up to
the first-order terms forl2 yields

G(1)5f5
2p

ex
exp~2xz!1

pl2

m0x2

11xz

x
exp~2xz!

The last relation coincides with the result obtained by in
gration of the fundamental solution for three dimensions
cording to expression~21!.

IV. CURVATURE ELASTICITY CONSTANTS DEPENDING
ON THE MAGNETIC-FIELD STRENGTH

Above we have arbitrarily assumed that magnetic p
ticles are located in the region surrounding a membra
Other cases can be arrived at by simply rearranging algeb
signs. Calculation of the electrostatic energy of a membr

F5 1
2E sfdS

in the one-sided model can be reduced to the solution of
Neumann problem with the following boundary condition

2e
]f

]n U
1

54ps ~28!

for a set of differential equations~15! and ~16!. Using the
fundamental solutionG this problem can be solved by writ
ing the single-layer potential
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f5E G~r2r8!S~r8!dS8, ~29!

where the unknown functionS using the theorem for the
normal derivative of the single-layer potential

e
]f

]n U
1

522pS1ePE ]G

]n
~r2r8!S~r8!dS8

can be found from the following boundary integral equati
~P denotes the Cauchy principal value!:

S52s1
1

2p
ePE ]G

]n
~r2r8!S~r8!dS8. ~30!

Equation~30! is useful for obtaining the expansion for th
free energy in relation to the curvature of a surface@6#. De-
tails of the calculation are given in the Appendix. Express
for the free energy up to the second-order terms in the c
vature gives

F5F02
2ps2l2h0n

2

m0x2

1

2x2E S 1

R1
1

1

R2
DdS

1E 2ps2l2

m0x2 F21h0n
2

16x3 S 1

R1
1

1

R2
D 2

2
3

4x3

1

R1R2

2
3

4x3
h0j

2 1

R1
2

2
3

4x3
h0h

2 1

R2
2GdS, ~31!

where j,h axis of local Cartesian coordinates are direct
along the principal directions of a curvature. The result giv
by expression~31! draws attention due to several interesti
issues. The first one is the increase in the curvature elast
constant depending on the angle between the normal
membrane and a field. The value of the increase in the e
ticity constant according to relation~31! equals

DKc5
21

4

ps2l2

m0x2

h0n
2

x3
. ~32!

The obtained result differs only by a numerical coefficie
from the increase in the curvature elasticity constant t
could be found from the expression of the electrical con
bution to the curvature elasticity constant of the one-sid
model @3,6#

3ps2

2ex3

by substituting the effective value of the screening param
found above when considering the charge screening of a
nar membrane@9,10#:

xe.x2
el2hn

2

2m0x
, ~33!

which for the elasticity constant gives
2-4
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DKc5
9ps2l2h0n

2

4m0x5
.

This value differs from the value found from the curvatu
expansion by a coefficient 7/3. It is interesting to note t
the same procedure carried out for the Gaussian curva
elasticity constant gives exact result. Indeed, if, in the c
when the field is normal to the membrane, we substitutex by
its effective value~33! in the expression for the Gaussia
curvature elasticity constant@3,6# ps2/ex3, we obtain the
value decreased byDKG53ps2l2/2m0x5—the same that
follows from the curvature expansion. It is important to r
mark that the decrease in the Gaussian curvature elas
constant does not depend on the orientation of a field w
respect to a membrane. The third effect that follows from
analysis is related to appearance of the anisotropy of
bending elasticity in a tangential plane of a membrane. T
physical reason of this effect consists in the redistribution
magnetic polyions near a charged membrane due to the
of magnetic forces at the bending of a membrane. We
derive the expression for the spontaneous curvature o
membrane from relation~31! accounting for the curvature
elasticity constant 3ps2/2ex3 of a charged membrane in th
one-sided model. By selecting a model in which the surf
density of charges on either side of a membrane is ident
whereas the magnetic polyions are located only on the
side of a membrane, i.e., on the outside of the vesicle in
considered case, the total contribution to the surface den
of the free energy of a membrane reads

1

2
2

3ps2

2ex3 S 1

R1
1

1

R2
D 2

1
21ps2l2h0n

2

8m0x5 S 1

R1
1

1

R2
D 2

2
ps2l2h0n

2

m0x4 S 1

R1
1

1

R2
D1

2ps2l2

m0x2

3S 2
3

4x3

1

R1R2
2

3

4x3
h0j

2 1

R1
2

2
3

4x3
h0h

2 1

R2
2D .

~34!

To interpret the conclusions following from relation~34! it
should be taken into account that due to the presenc
polyions only from one side of a membrane it already exh
its a spontaneous curvature, which could be expressed b
following relation @3,6# (xe,i are screening constants of th
exterior and interior regions of a vesicle, respectively!:

1

R0
52

2

3
~xe2x i ! ~35!

Accounting for expression of the screening constant of
electrolyte with magnetic polyions gives

1

R0
52

1

3

zk
2nk0

z1
2 n101z2

2 n20

~36!
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By introducing the spontaneous curvature according to r
tion ~35!, relation~34! can be written as follows

1

2
KcS 1

R1
1

1

R2
2

1

R0
2D

1

R0
D 2

1KG

1

R1R2
2Kah0j

2 1

R1
2

2Kah0h
2 1

R2
2

, ~37!

where the anisotropic curvature elasticity modulus is defin
as

Ka5
3ps2l2

2m0x5
, ~38!

Kc52
3ps2

2ex3
1DKc , ~39!

KG52
ps2

ex3
2DKG , ~40!

but the change in the spontaneous curvature due to the a
of a magnetic field can be expressed as follows:

D
1

R0
5

el2e2h0n
2

3m0x
~41!

Relation~41! gives the same result as obtained by substi
ing the effective value of the screening constant due the
tion of a magnetic field as calculated for a planar membr
~the small difference betweenx and x i is neglected! in the
relation ~35!:

xe5x i2
el2hn

2

2m0x i

Thus, the conclusions obtained within the framework of t
planar model@9,10# concerning the influence of a magnet
field on the spontaneous curvature of a membrane coinc
with that obtained from the curvature expansion. Relatio
for the spontaneous curvature of a membrane obtained
the case currently under our consideration when magn
particles are located outside a vesicle just by the chang
signs in relations~36! and~41! gives the corresponding rela
tions for a more usual case when magnetic polyions lie
side a vesicle, i.e., in the absence of a magnetic field i
energetically more advantageous for a membrane to ben
the direction of the part that contains magnetic polyions d
to stronger screening there. As an external field moves m
netic polyions against the membrane, the characteri
screening length for the sections of a membrane perpend
lar to a field is increased and a membrane flattens. Accord
to relation ~41! respective diminishing in the spontaneo
curvature can be calculated in accordance with the follow
relation:
2-5
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D
1

R0
52

el2h0n
2

3m0x
~42!

Since the change in the spontaneous curvature depend
the angle between a membrane and the direction of the m
netic field strength the spontaneous curvature of a memb
becomes anisotropic. Besides the anisotropy connected
the spontaneous curvature there is, as it follows from
relation~37!, another anisotropy connected with the bend
energy in the magnetic field having the components tang
tial to the membrane. The relation~37! shows that the energ
of bending in the direction along the magnetic field lines
lower than that in perpendicular direction. Anisotropy of t
bending energy is remarked also in DNA-cationic lip
complexes—the stacks of the membranes intercalated
DNA strands@13#. The simplest phenomenon by which th
effects considered above could manifest themselves is
nected with an oblate-prolate shape transition of a ves
under the action of an external field reported in@9,10# and
considered there within the framework of the planar appro
mation. Several simple relations for description of this eff
follow in the next part. It should be noticed that due to t
variation in the screening length in the presence of a fie
change in the surface energy of a planar membrane t
place. Since the field effect depends on the angle betwe
field and the normal to a membrane it leads to the anisotr
of the surface tension. Since this effect is compensated
the local anisotropic deformation of a membrane it can
neglected in the following consideration of the prolate-obl
transition.

V. PROLATE-OBLATE TRANSITION IN EXTERNAL
FIELD AND COMPARISON WITH EXPERIMENTAL DATA

A ferrovesicle with the membrane whose properties
not influenced by a magnetic field under the action of
external field elongates in the direction of a field@8#. In this
case when a magnetic field modifies the interaction betw
a charged membrane and magnetic polyions situation
comes more complicated since the trend of elongation o
ferrovesicle along the field direction due to the diminishi
demagnetizing-field effects now is competing with the tre
of the flattening of a membrane near poles caused by
diminishing spontaneous curvature there. Additional con
bution to the vesicle shape transformation can be attribu
to the field-induced anisotropy of the bending modulus o
membrane. Complete analysis of the resulting phase diag
is quite complicated and will be the subject for further inve
tigations. By using simple energetic arguments we intend
consider eventual competing mechanisms behind the
rovesicle shape transformations. Let us assume that a
rovesicle undergoes the axisymmetric shape transforma
that in the spherical system of coordinates with the polar a
running along the field direction may be described by
following equation (r is the modulus of the radius-vector t
a point on a vesicle,u is the angle in the spherical system
coordinates!:
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Re2~3 cos2u21!

6
, ~43!

wheree2 is positive if deformation leads to a prolate sha
and negative for the case of the oblate deformation. T
magnetic energy of a ferrovesicle assuming its ellipsoi
shape reads „N(e)5@(12e2)/2e3#@ ln(12e)/(11e)22e#,
which is the demagnetizing field coefficient,e is the eccen-
tricity of a prolate ellipsoid…

Em52
1

2

x0nk0H0
2

@11~m021!N~e!#
V ~44!

and for small deviations from the spherical shape (e2!1)
gives

Em52
~m021!H0

2

8p
V2

~m021!2H0
2

4p

e2

15
V, ~45!

which describes the trend of the prolate deformation un
the action of a field. It is possible to show that the contrib
tion of the anisotropic part of the curvature elasticity mod
lus determined by relation~32! up to the first order ine2

exactly equals zero. Another mechanism that induces
shape transformation in a ferrovesicle is related to the par
anisotropy of the curvature energy that is described by
last two terms in relation~31!. This part of the curvature
energy up to the first order ine2 gives

Ea5
16p2

5

s2l2

m0x5
e2 ~46!

and by introducing the parametera5zk
2nk0 /(z1

2 n10

1z2
2 n20) characterizing the contribution of magnetic pol

ions to the screening constant and electrostatic contribu
to the curvature elasticity modulusKc

e53ps2/ex3 can be
rewritten as follows:

Ea5
16p

15
Kc

eaMoe2. ~47!

The parameterMo54pnk0
2 x0

2H0
2/m0nk0kBT characterizes

the ratio of the magnetic and osmotic pressures and
describes importance of magnetic forces in bringing ab
the change in the membrane charge screening under th
tion of a magnetic field. From relation~47! one could see
that the anisotropy of the bending modulus favors an ob
shape (e2,0) and thus competes with the magnetic ene
causing elongation of a ferrovesicle along the direction o
magnetic field. Even a more important contribution favori
an oblate shape arises from the anisotropy of the spontan
curvature of a membrane. The curvature elasticity energ

1

2
Kc

eE S 1

R1
1

1

R2
2

1

R0
2D

1

R0
D 2

dS ~48!

accounting for the following relations (xs is the screening
constant of an outer electrolyte solution without magne
polyions! yields
2-6
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1

R0
5

xsa

3

and

D
1

R0
52

el2h0n
2

3m0xs

up to the first-order terms fore2 at shape deformation de
scribed by relation~43! when

hn
25 cos2u22e2 cos2u sin2u

at xsa@R21 gives

Ec
spon5const1pKc

eMoa2~xsR!2
32

405
e2. ~49!

SincexsR@1, the contribution of the anisotropy of the spo
taneous curvature to the formation of oblate shape is m
important than anisotropy of the bending modulus. As it f
lows from relations~45! and ~49! there are two competing
mechanisms leading in dependence on the physical co
tions to the prolate or oblate vesicle deformation. By t
comparison of the energy of magnetic interactions~45! with
the energy value due to the variation in the spontaneous
vature @Eq. ~49!# the following equation for the prolate
oblate transition line is obtained

pKc
eMoa2~xsR!2

32

405
5

~m021!2

4p

H0
2V

15
. ~50!

Inserting the values of the physical parameters the last r
tion transforms into

R5
8ps2

3eA4pekBTm0

zk
4nk0

~z1
2 n101z2

2 n20!5/2
~51!

In experiments described in@9,10# trisodium citrate is used
as electrolyte. By introducing the notation for the electroly
concentrationc5n20 the condition of the electroneutralit
z1n105z2n20 allows one to express the critical radius
the oblate-prolate transition in dependence on the electro
concentration as follows:

R5
8ps2

3eA4pekBTm0

zk
4nk0

@z1~z11z2!#5/2c5/2
. ~52!

Several physical parameters are introduced in Eq.~52!, sur-
face charge densitys on the membrane,nk0 is concentration
of the colloidal particles in the membrane. Since due to
certainties of the colloidal particle entrapment at the ves
preparation processnk0 varies considerably from a vesicle t
vesicle, it must be determined for each vesicle separa
For this purpose magnetophoretic mobility of each f
rovesicle in the magnetic field of the given gradient w
determined in@9,10# and magnetic susceptibility of the co
loidal solution obtained. Due to the very low concentrati
04151
re
-

di-
e

r-

a-

te

-
e

ly.
-
s

of the ferroparticles the magnetic susceptibility can be
pressed by the Langevin formula

k5
nk0Ms

2Vp
2

3kBT
, ~53!

where Ms is the saturation magnetization of ferromagne
colloidal particles butVp is the volume of a colloidal par-
ticle. Thus relation~52! reads

R

k
5

8ps2kBT

eA4pekBTMs
2Vp

2

zk
4

@z1~z11z2!#5/2c5/2
. ~54!

Values for R/k in electrolyte concentration dependence
logarithmic coordinates are given in Fig. 1. The followin
values of the physical parameters are used@9,10#: Ms
5360 G, diameter of the particlesd51.2 nm, the colloidal
particles have zk525 elementary charges ands
5400 esu/cm2. The last value corresponds to the surfa
area per elementary chargeS51.2310212 cm2, which
means that about 1% of all lipids are charged. Experim
tally measured values ofR and k tabulated in@9,10# are
shown in Fig. 1 by filled~the prolate shape! and open~the
oblate shape! circles. Although the data shown in Fig. 1 a
rather scarce, nevertheless, they give the clear indication
the proposed model of the oblate-prolate transition is reas
able since the magnetic and electrostatic energies of the
formed vesicle corresponding to the measured values oR
andk are of the same order of magnitude in the range of
electrolyte concentration where oblate-prolate transit
takes place. Accounting for many factors influencing the
havior of magnetic vesicles that does not seem to be tri
result. As it is possible to conclude from Fig. 1 that the d
points reflect the trend of the prolate deformation if the el
trolyte concentration or the radius of a vesicle grows. B
sides we should remark that many more nontabulated
points given in@9,10#, for example, in Fig. 11.6 of@9#, cor-
respond to that conclusion reasonably well. It should be
marked as well that for considered case of weak magn
fields the condition of the prolate-oblate transition does
depend on magnetic field strength. Existing experimental
sults@9,10# are given for a single fixed value of the magne
field strength 400 Oe.

FIG. 1. Dependence of oblate-prolate transition upon electro
concentration. Open circles correspond to oblate shapes, fi
circles to prolate shapes. Electrolyte concentrationc in mmol/l.
2-7
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VI. CONCLUSION

The influence of a magnetic field on the membrane cha
screening by an electrolyte solution with magnetic polyio
is considered by taking into account the magnetic field n
homogenity arising due to the repulsion of charged magn
particles from a charged membrane. It is shown that a m
netic field increases the effective screening distance for th
parts of the membrane that are noncollinear to the magn
field direction; maximum increase takes place for the pa
that are normal to a magnetic field. It is demonstrated t
due to the anisotropy of the effective charge screening
tance, the elastic properties of a membrane become an
tropic. The curvature elasticity modulus due to increase
the screening length grows to reach the maximum value
those parts of a membrane that are normal to a field.
spontaneous curvature too becomes anisotropic, taking
minimum value for these parts of a membrane that are n
mal to a magnetic field. Thus, deformation of a ferrovesi
under the action of a magnetic field is determined by t
competing mechanisms—elongation of a ferrovesicle al
the magnetic field direction due to the tendency to dimin
the demagnetization-field energy and to transform into
oblate shape due to the decrease in the spontaneous curv
for these parts of a membrane which are normal to an ex
nal field. The boundary in the parameter space between
late and oblate shapes is found from the elastic propertie
a membrane in a field, which are calculated by the curva
expansion of the free energy. The conclusions from the
oretical model are in qualitative and quantitative agreem
with the available experimental results.

APPENDIX

Solving integral equation~30! by the iterative procedure
we obtain the following curvature expansion for the functi
S

S52s1eP
1

2pE ]G

]n
~r2r8!2sdS8

1
1

2p
ePE ]G

]n
~r2r8!dS8

1

2p
ePE ]G

]n8
~r82r9!2sdS9.

~A1!

As a result the free energy reads

F5s2F E dSE G~r2r8!dS8

1eE dSE G~r2r8!dS8
1

2p
PE ]G

]n8
~r82r9!dS9

1e2E dSE G~r2r8!dS8
1

2p
PE ]G

]n8

3~r82r9!dS9
1

2p
PE ]G

]n9
~r92r-!dS-G . ~A2!
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The fundamental solution~20! can be expressed as follows

G5G01G1 ,

where

G1~r!5~h0¹!2H~r ! ~A3!

and the following expression is valid for the functionH(r )

H5
l2

m0x2 Fexp~2xr !

x2r
1

1

2x
exp~2xr !G . ~A4!

By introducing the Cartesian set of coordinates withz axis
along the external normal of a surface in the point w
radius-vectorr andj,h axes along the principal directions o
the curvature, the surface equation near the point with
radius-vectorr reads

r85r1~j,h,z!,

where

z52
j2

2R1
2

h2

2R2

(R1 ,R2 are the principal radiuses of the curvature!. Expres-
sion~A3! for G1 gives (H8 denotesH derivative with respect
to r )

G15
H8

ur2r8u
2

@h0~r2r8!#2

ur2r8u3
H81S h0~r2r8!

ur2r8u
D 2

H9.

As a result the following expression of the fundamental
lution up to the terms of the second order in the curvature
obtained (r5Aj21h2):

G15
H8

r
1S H92

H8

r D ~h0jj1h0hh!2

r2

1S H92
H8

r D2h0nz~h0jj1h0hh!

r2

1S H8

r D 81

2

z2

r
2S H92

H8

r D ~h0jj1h0hh!2z2

r4

1S H92
H8

r Dh0n
2 z2

r2
1S H92

H8

r D 8

3
1

2

z2

r

~h0jj1h0hh!2

r2
. ~A5!

Now, on the basis of expression for the free energy@Eq.
~A2!# and relation~A4! the curvature expansion of the fre
energy may be obtained. Since the concentration of magn
particles in a ferrovesicle is small, we will find this expa
sion up to the first-order terms inl2 (dS denotes integration
along the plane tangential to a membrane!
2-8
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Up to thel2 the first-order terms in the curvature expa
sion are

F (1)5es2E dSE G0~r2r8!dS8
1

2p
PE ]G1

]n8
~r82r9!dS9

1es2E dSE G1~r2r8!dS8
1

2p
PE ]G0

]n8
~r82r9!dS9.

~A6!

The first term in the last relation is readily transformed in

E dSE G0~r2r8!dS8
1

2p
PE ]G1

]n8
~r82r9!dS9

5E dS
1

2 S E dS8
1

2p
PE G0~r2r8!

]G1

]n8
~r82r9!dS9

1E dS9
1

2p
PE G0~r2r8!

]G1

]n8
~r82r9!dS8D

5E dS
1

2E G0~r2r8!dS8
1

2p
P

3E S j

R1

]G1

]j
1

h

R2

]G1

]h DdS9

52E dS
1

2E G0~r2r8!dS8
1

2p S 1

R1
1

1

R2
D E G1dS9.

~A7!

Then using the relations

E dSG0~r2r8!5
2p

x
,

E dS9
]G0

]n8
~r82r9!52

p

x S 1

R1
1

1

R2
D ~r8!,

and

1

2pE dSG15
1

2x
h0n

2 l2

m0x2
~A8!

as found for calculation of the fundamental solution for 1
case for the first-order contribution to the free energy
obtain

F (1)52
2ps2l2h0n

2

m0x2

1

2x2E S 1

R1
1

1

R2
DdS8. ~A9!

In a similar way the next-order terms are calculated. Seco
order terms read
04151
e

d-

I 11s2E dSE G1S 1

2

j2

R1
2

1
1

2

h2

R2
2D dS

1e2s2E dSF 1

2p
PE G0~r2r8!dS8

1

2p
P

3E ]G1

]n8
~r82r9!dS9

1

2p
P E ]G0

]n9
~r92r-!dS-

1
1

2p
PE G0~r2r8!dS8

1

2p
PE ]G0

]n8
~r82r9!dS9

3
1

2p
PE ]G1

]n9
~r92r-!dS-G1e2s2E dS

1

2p
P

3E G1~r2r8!dS8
1

2p
PE ]G0

]n8
~r8Àr9!dS9

3
1

2p
PE ]G0

]n9
~r9Àr-!dS-, ~A10!

where

I 15s2E dSE dSF1

2 S H8

r D 8z2

r
2S H92

H8

r D
3

~h0jj1h0hh!2z2

r4
1S H92

H8

r Dh0n
2 z2

r2

1S H92
H8

r D 8 z2

2r

~h0jj1h0hh!2

r2 G . ~A11!

The third term in the last expression using the relations

E ]G0

]n9
~r2r!dS-52

p

ex S 1

R1
1

1

R2
D ~r!,

E ]G0

]n8
~r2r!dS852

p

ex S 1

R1
1

1

R2
D ~r!,

E dSG0~r2r!5
2p

ex

can be transformed into

2s2e2E dSG0~r2r!E F 1

2p
PE ]G1

]n9
~r2r!dS-

1
1

2p
PE ]G1

]n8
~r2r!dS8G 1

2ex S 1

R1
1

1

R2
D ~r!dS9.

~A12!

By applying the relations
2-9
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A. CĒBERS PHYSICAL REVIEW E 63 041512
]G1

]n8
5

]G1

]z
1

j

R1

]G1

]j
1

h

R2

]G1

]h
,

]G1

]n9
52

]G1

]z
,

the last expression can be rewritten as

s2E 2p

2x2 S 1

R1
1

1

R2
D 2

dS9
1

2pE G1dS.

To arrive at the contribution of the second-order terms in
curvature expansion, (1/2p)*G1dS from the expression
~A8! and the following relations:

E G1S 1

2

j2

R1
2

1
1

2

h2

R2
2D dS

5
p

R1
2E0

`

r2H8dr1
p

R2
2E0

`

r2H8dr1ph0j
2

3E
0

`

r2S H92
H8

r D S 3r3

8R1
2

1
r3

8R2
2D dr1ph0h

2

3E
0

`S H92
H8

r D S r3

8R2
2

1
r3

8R1
2D dr, ~A13!
h,

I.

r-

04151
e

I 15
2p

64E0

`S 3

R1
2

1
3

R2
2

1
2

R1R2
D S H8

r D 8
r4dr1

2p

4
h0n

2

3E
0

`S H92
H8

r D r3S 3

8R1
2

1
3

8R2
2

1
2

8R1R2
D dr26ph0j

2

3E
0

`S H92
H8

r D r3S 5

64

1

R1
2

1
1

64

1

R2
2

1
2

64

1

R1R2
D dr

26ph0h
2 E

0

`S H92
H8

r D
3r3S 5

64

1

R2
2

1
1

64

1

R1
2

1
2

64

1

R1R2
D dr ~A14!

are used. The following integrals appear in relations~A13!
and ~A14!:

E
0

`S H8

r D 8
r4dr5

12

x3
,

E
0

`S H92
H8

r Ddr5
12

x3
.

After regrouping of terms the contribution of the secon
order terms to the free energy reads

E 2ps2l2

m0x2 F21h0n
2

16x3 S 1

R1
1

1

R2
D 2

2
3

4x3

1

R1R2
2

3

4x3
h0j

2 1

R1
2

2
3

4x3
h0h

2 1

R2
2GdS.
yn-
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